Category Archives: Causes of Diabetes

If You Have Diabetes, You Need to Know About Glucagon

I couldn't find a pertinent picture

I couldn’t find a pertinent picture

Everybody knows that insulin is the key hormone gone haywire in diabetes, right? Did you know it’s not the only one out of whack? Roger Unger and Alan Cherrington in The Journal of Clinical Investigation point out that another hormone—glucagon—is also very important in regulation of blood sugar in both types of diabetes.

Insulin has a variety of actions the ultimately keep blood sugar levels from rising dangerously high. Glucagon, on the other hand, keeps blood sugar from dropping too low. For instance, when you stop eating food, as in an overnight or longer fast, glucagon stimulates glucose (sugar) production by your liver so you don’t go into a hypoglycemic coma and die. It does the same when you exercise, as your muscles soak up glucose from your blood stream.

Glucagon works so well to raise blood sugar that we inject it into diabetics who are hypoglycemic but comatose or otherwise unable to swallow carbohydrates.

Glucagon also has effects on fatty acid metabolism, ketone production, and liver protein metabolism, but this post is already complicated enough.

So where does glucagon come from? The islets of Langherhans, for one. You already know the healthy pancreas has beta cells that produce insulin. The pancreas has other cells—alpha or α cells—that produce glucagon. Furthermore, the stomach and duodenum (the first part of the small intestine) also have glucagon-producing alpha cells. The insulin and glucagon work together to keep blood sugar in an fairly narrow range. Insulin lowers blood sugar, glucagon raises it. It’s sort of like aiming for a hot bath by running a mix of cold and very hot water.

Update: I just licensed this from Shutterstock.com

Update: I just licensed this from Shutterstock.com

Ungar and Cherrington say that one reason it’s so hard to tightly control blood sugars in type 1 diabetes is because we don’t address the high levels of glucagon. The bath water’s not right because we’re fiddling with just one of the faucets. Maybe we’ll call this the Goldilocks Theory of Diabetes.

When you eat carbohydrates, your blood sugar starts to rise. Beta cells in the healthy pancreas start secreting insulin to keep a lid on the blood sugar rise. This is not the time you want uncontrolled release of glucagon from the alpha cells, which would work to raise blood sugars further. Within the pancreas, beta and alpha cells are in close proximity. Insulin from the beta cells directly affects the nearby alpha cells to suppress glucagon release. This localized hormone effect is referred to as “paracrine guidance” in the quote below, and it takes very little insulin to suppress glucagon.

From the Ungar and Cherrington article:

Here, we review evidence that the insulinocentric view of metabolic homeostasis is incomplete and that glucagon is indeed a key regulator of normal fuel metabolism, albeit under insulin’s paracrine guidance and control. Most importantly, we emphasize that, whenever paracrine control by insulin is lacking, as in T1DM, the resulting unbridled hyperglucagonemia is the proximal cause of the deadly consequences of uncontrolled diabetes and the glycemic volatility of even “well-controlled” patients.

*  *  *

All in all, it would seem that conventional monotherapy with insulin is incomplete because it can provide paracrine suppression of glucagon secretion only by seriously overdosing the extrapancreatic tissues.

So What?

Elucidation of diabetes’ disease mechanisms (pathophysiology) can lead to new drugs or other therapies that improve the lives of diabetics. A potential drug candidate is leptin, known to suppress glucagon hyper secretion in rodents with type 1 diabetes.

RTWT.

Steve Parker, M.D.

PS: Amylin is yet another hormone involved in blood sugar regulation, but I’ll save that for another day. If you can’t wait, read about it here in my review of pramlintide, a drug for type 1 diabetes.

Do Sugar Substitutes Cause Overweight and T2 Diabetes?

We don’t know with certainty yet. But a recent study suggests that non-caloric artificial sweeteners do indeed cause overweight and type 2 diabetes in at least some folks. The study at hand is very small, so I wouldn’t bet the farm on it. I’m not changing any of my recommendations at this point.

exercise for weight loss and management, dumbbells

Too many diet sodas?

 

The proposed mechanism for adverse metabolic effects of sugar substitutes is that they alter the mix of germs that live in our intestines. That alteration in turn causes  the overweight and obesity. See MedPageToday for the complicated details. The first part of the article is about mice; humans are at the end.

Some quotes:

“Our results from short- and long-term human non-caloric sweetener consumer cohorts suggest that human individuals feature a personalized response to non-caloric sweeteners, possibly stemming from differences in their microbiota composition and function,” the researchers wrote.

The researchers further suggested that these individualized nutritional responses may be driven by personalized functional differences in the micro biome [intestinal germs or bacteria].

***

Diabetes researcher Robert Rizza, MD, of the Mayo Clinic in Rochester, Minn., who was not involved with the research, called the findings “fascinating.”

He noted that earlier research suggests people who eat large amounts of artificial sweeteners have higher incidences of obesity and diabetes. The new research, he said, suggests there may be a causal link.

“This was a very thorough and carefully done study, and I think the message to people who use artificial sweeteners is they need to use them in moderation,” he said. “Drinking 17 diet sodas a day is probably a bad idea, but one or two may be OK.”

I won’t argue with that last sentence! (Unless you have phenylketonuria and want to use aspartame.)

Finally, be aware that several clinical studies show no linkage between human consumption of non-caloric artificial sweeteners and overweight, obesity, and T2 diabetes.

Steve Parker, M.D.

Pollution May Be Causing T2 Diabetes and Obesity

It sounds like Jerome Ruzzin is convinced that’s the case. I put some thought into it last August and was skeptical—still am, but I’m keeping an open mind. Mr. Ruzzin has a review article published in 2012 at BMC Public Health (“Public health concern behind the exposure to persistent organic pollutants and the risk of metabolic diseases”). Here’s his summary:

The global prevalence of metabolic diseases like obesity and type 2 diabetes, and its colossal economic and social costs represent a major public health issue for our societies. There is now solid evidence demonstrating the contribution of POPs [persistent organic pollutants], at environmental levels, to metabolic disorders. Thus, human exposure to POPs might have, for decades, been sufficient and enough to participate to the epidemics of obesity and type 2 diabetes. Based on recent studies, the fundaments of current risk assessment of POPs, like “concept of additive effects” or “dioxins and dl-PCBs induced similar biological effects through AhR”, appear unlikely to predict the risk of metabolic diseases. Furthermore, POP regulation in food products should be harmonized and re-evaluated to better protect consumers. Neglecting the novel and emerging knowledge about the link between POPs and metabolic diseases will have significant health impacts for the general population and the next generations.

Read the whole enchilada.

The cold-water fatty fish I so often recommend to my patients could be hurting them. They are major reservoirs of food-based POPs.

Steve Parker, M.D.

Dr. Richard Feinman Doubts Red Meat Causes T2 Diabetes

This looks healthful to me, despite the red meat

This looks healthful to me, despite the red meat

At least one recent study implicated red meat consumption as a cause of type 2 diabetes. Dr. Richard Feinman at his blog takes a close look at the 2013 study and points out the great difficulty in making the leap from red meat to diabetes. I think Dr. Feinman’s point is best made by his graph about half way through the post, showing steadily decreasing red meat consumption as T2 diabetes takes off over the last four decades. (I assume all the figures are based on U.S. data.)

For the opposing viewpoint, read the original study (linked at Dr. F’s blog) or search at Fanatic Cook.

Do I worry that red meat causes diabetes? Not much. I await definitive research.

Steve Parker, M.D.

Dr. Roy Taylor on the Cause of Type 2 Diabetes and What To Do About It

diabetic diet, low-carb Mediterranean Diet, low-carb, Conquer Diabetes and Prediabetes

Warning: this is a sciencey post

According to Roy Taylor, M.D., “type 2 diabetes is a potentially reversible metabolic state precipitated by the single cause of chronic excess intraorgan fat.” The organs accumulating fat are the pancreas and liver. He is certain “…that the disease process can be halted with restoration of normal carbohydrate and fat metabolism.” I read Taylor’s article published last year in Diabetes Care.

(Do you remember that report in 2011 touting cure of T2 diabetes with a very low calorie diet? Taylor was the leader. The study involved only 11 patients, eating 600 calories a day for eight weeks.)

Dr. Taylor says that severe calorie restriction is similar to the effect of bariatric surgery in curing or controlling diabetes. Within a week of either intervention, liver fat content is greatly reduced, liver insulin sensitivity returns, and fasting blood sugar levels can return to normal. During the first eight weeks after intervention, pancreatic fat content falls, with associated steadily increasing rates of insulin secretion by the pancreas beta cells.

bariatric surgery, Steve Parker MD

Band Gastric Bypass Surgery (not the only type of gastric bypass): very successful at “curing” T2 diabetes if you survive the operation

Taylor’s ideas, by the way, dovetail with Roger Unger’s 2008 lipocentric theory of diabetes. Click for more ideas on the cause of T2 diabetes.

Here are some scattered points from Taylors article. He backs up most of them with references:

  • In T2 diabetes, improvement in fasting blood sugar reflects improved liver insulin sensitivity more than muscle insulin sensitivity.
  • The more fat accumulation in the liver, the less it is sensitive to insulin. If a T2 is treated with insulin, the required insulin dose is positively linked to how much fat is in the liver.
  • In a T2 who starts insulin injections, liver fat stores tend to decrease. That’s because of suppression of the body’s own insulin delivery from the pancreas to the liver via the portal vein.
  • Whether obese or not, those with higher circulating insulin levels “…have markedly increased rates of hepatic de novo lipogenesis.” That means their livers are making fat. That fat (triglycerides or triacylglycerol) will be either burned in the liver for energy (oxidized), pushed into the blood stream for use elsewhere, or stored in the liver. Fatty acids are components of triglycerides. Excessive fatty acid intermediaries in liver cells—diglycerides and ceramide—are thought to interfere with insulin’s action, i.e., contribute to insulin resistance in the liver.
  • “Fasting plasma glucose concentration depends entirely on the fasting rate of hepatic [liver] glucose production and, hence, on its sensitivity to suppression by insulin.”
  • Physical activity, low-calorie diets, and thiazolidinediones reduce the pancreas’ insulin output and reduce liver fat levels.
  • Most T2 diabetics have above-average liver fat content. MRI scans are more accurate than ultrasound for finding it.
  • T2 diabetics have on average only half of the pancreas beta cell mass of non-diabetics. As the years pass, more beta cells are lost. Is the a way to preserve these insulin-producing cells, or to increase their numbers? “…it is conceivable that removal of adverse factors could result in restoration of normal beta cell number, even late in the disease.”
  • “Chronic exposure of [pancreatic] beta cells to triacylglycerol [triglycerides] or fatty acids…decreases beta cell capacity to respond to an acute increase in glucose levels.” In test tubes, fatty acids inhibit formation of new beta cells, an effect enhanced by increased glucose concentration.
  • There’s a fair amount of overlap in pancreas fat content comparing T2 diabetics and non-diabetics. It may be that people with T2 diabetes are somehow more susceptible to adverse effects of the fat via genetic and epigenetic factors.
  • “If a person has type 2 diabetes, there is more fat in the liver and pancreas than he or she can cope with.”
  • Here’s Dr. Taylor’s Twin Cycle Hypothesis of Etiology of Type 2 Diabetes: “The accumulation of fat in liver and secondarily in the pancreas will lead to self-reinforcing cycles that interact to bring about type 2 diabetes. Fatty liver leads to impaired fasting glucose metabolism and increases export of VLDL triacylglcerol [triglycerides], which increases fat delivery to all tissues, including the [pancreas] islets. The liver and pancreas cycles drive onward after diagnosis with steadily decreasing beta cell function. However, of note, observations of the reversal of type 2 diabetes confirm that if the primary influence of positive calorie balance is removed, the the processes are reversible.”
diabetic diet, etiology of type 2 diabetes, Roy Taylor, type 2 diabetes reversal

Figure 6 from the article: Dr. Taylor’s Twin Cycle Hypothesis of Etiology of Type 2 Diabetes

  • The caption with Figure 6 states: “During long-term intake of more calories than are expended each day, any excess carbohydrate must undergo de novo lipogenesis [creation of fat], which particularly promotes fat accumulation in the liver.”
  • “The extent of weight gloss required to reverse type 2 diabetes is much greater than conventionally advised.” We’re looking at around 15 kg (33 lb) or 20% of body weight, assuming the patient is obese to start.  “The initial major loss of body weight demands a substantial reduction in energy intake. After weight loss, steady weight is most effectively achieved by a combination of dietary restriction and physical activity.”

Dr. Taylor doesn’t specify how much calorie restriction he recommends, but reading between the lines, I think he likes his 600 cals/day for eight weeks program. That will have a have a high drop-out rate. I suspect a variety of existing ketogenic diets may be just as successful and more realistic, even if it takes more than eight weeks. I wonder how many of the 11 “cures” from the 2011 study have persisted.

Steve Parker, M.D.

Reference: Taylor, Roy. Type 2 diabetes: Etiology and reversibility. Diabetes Care, April 2013, vol. 36, no. 4, pp:1047-1055.

Update: Some wild and crazy guys tried the Taylor method at home. Click for results.

Low Magnesium Intake Linked to Type 2 Diabetes

…according to an article at Diabetes Care.

Visit the Linus Pauling Institute for dietary sources of magnesium. It remains to be seen, however, whether purposefully increasing your magnesium consumption via food or supplements will prevent diabetes.

Do Environmental Contaminants Cause Type 2 Diabetes or Obesity?

"Today we're going to learn about odds ratios and relative risk."

“Today we’re going to learn about odds ratios and relative risk.”

A month ago I watched part of a documentary called “Plastic Planet” on Current TV (Now Al Jazeera TV). It was alarming. Apparently chemicals are leaking out of plastics into the environment (or into foods contained by plastic), making us diabetic, fat, impairing our fertility, and God knows what else. The narrator talked like it was a sure thing. I had to go to work before it was over. A couple chemicals I remember being mentioned are bisphenol A (BPA) and phthalates. I sorta freaked my wife out when I mentioned it to her. I always take my lunch to work in plastic containers and often cover microwaved food with Glad Press’n Seal plastic wrap.

A few days later I saw a report of sperm counts being half of what they were just half a century ago. (It’s debatable.) Environmental contaminants were mentioned as a potential cause.

So I spent a couple hours trying to figure out if chemical contamination really is causing obesity and type 2 diabetes. In the U.S., childhood obesity has tripled since 1980, to a current rate of 17%. Even preschool obesity (age 2-5) doubled from 5 to 10% over that span. In industrial societies, even our pets, lab animals (rodents and primates), and feral rats are getting fatter! The ongoing epidemics of obesity and type 2 diabetes, and our lack of progress in preventing and reversing them, testify that we may not have them figured out and should keep looking at root causes to see if we’re missing anything.

Straightaway, I’ll tell you it’s not easy looking into this issue. The experts are divided. The studies are often contradictory or inconsistent. One way to determine the cause of a condition or illness is to apply Bradford Hill criteria (see bottom of page for those). We could reach a conclusion faster if we did controlled exposure experiments on humans, but we don’t. We look at epidemiological studies and animal studies that don’t necessarily apply to humans.

Regarding type 1 diabetes and chemical contamination, we have very little data. I’ll not mention type 1 again.

What Does the Science Tell Us?

For this post I read a couple pertinent scientific reviews published in 2012, not restricting myself to plastics as a source of chemical contaminants.

The first was REVIEW OF THE SCIENCE LINKING CHEMICAL EXPOSURES TO THE HUMAN RISK OF OBESITY AND DIABETES from non-profit CHEM Trust, written by a couple M.D., Ph.D.s. I’ll share some quotes and my comments. My clarifying comments within a quote are in [brackets].

“It should be noted that diabetes itself has not been caused in animals exposed to these chemicals [a long list] in laboratory studies, but metabolic disruption closely related to the pathogenesis of Type 2 diabetes has been reported for many chemicals.”

“In 2002, Paula Baillie-Hamilton proposed a hypothesis linking exposure to chemicals with obesity, and this is now gaining credence. Exposure to low concentrations of some chemicals leads to weight gain in adult animals, while exposure to high concentrations causes weight loss.”

“The obesogen hypothesis essentially proposes that exposure to chemicals foreign to the body disrupts adipogenesis [fat tissue growth] and the homeostasis and metabolism of lipids (i.e., their normal regulation), ultimately resulting in obesity. Obesogens can be functionally defined as chemicals that alter homeostatic metabolic set-points, disrupt appetite controls, perturb lipid homeostasis to promote adipocyte hypertrophy [fat cells swelling with fat], stimulate adipogenic pathways that enhance adipocyte hyperplasia [increased numbers of fat cells] or otherwise alter adipocyte differentiation during development. These proposed pathways include inappropriate modulation of nuclear receptor function; therefore, the chemicals can be termed EDCs [endocrine disrupting chemicals].”

Don't assume mouse physiology is the same as human's

Don’t assume mouse physiology is the same as human’s

Literature like this talks about POPs: persistent organic pollutants, sometimes called organohalides. The POPs and other chemical contaminants that are currently suspicious for causing obesity and type 2 diabetes include arsenic, pesticides, phthalates, metals (e.g., cadmium, mercury, organotins), brominated flame retardants, DDE (dichloro-diphenyldichloroethylene), PCBs (polychlorinated biphenyls), trans-nonachlor, dioxins.

Another term you’ll see in this literature is EDCs: endocrine disrupting chemicals. These chemicals mess with hormonal pathways. EDCs that mimic estrogen are linked to obesity and related metabolic dysfunction. Some of the chemicals in the list above are EDCs.

The fear—and some evidence—is that contaminants, whether or not EDCs, are particularly harmful to embryos, fetuses, and infants. For instance, it’s pretty well established that mothers who smoked while pregnant predispose their offspring to obesity in adulthood. (Epigenetics, anyone?) Furthermore, at the right time in the life cycle, it may only take small amounts of contaminants to alter gene expression for the remainder of life. For instance, the number of fat cells we have is mostly determined some time in childhood (or earlier?). As we get fat, those cells simply swell with fat. When we lose weight, those cells shrink, but the total cell number is unchanged. What if contaminant exposure in childhood increases fat cell number irrevocably? Does that predispose to obesity later in life?

The authors note that chemical contaminants are more strongly linked to diabetes than obesity. They do a lot of hemming and hawing, using “maybe,” “might,” “could,” etc. They don’t have a lot of firm conclusions other than “Hey, people, we better wake up and look into this further, and based on the precautionary principle, we better cut back on environmental chemical contamination stat!” [Not a direct quote.] It’s clear they are very concerned about chemical contaminants as a public health issue.

Here’s the second article I read: Role of Environmental Chemicals in Diabetes and Obesity: A National Toxicology Program Workshop Review. About 50 experts were empaneled. Some quotes and my comments:

“Overall, the review of the existing literature identified linkages between several of the environmental exposures and type 2 diabetes. There was also support for the “developmental obesogen” hypothesis, which suggests that chemical exposures may increase the risk of obesity by altering the differentiation of adipocytes [maturation and development of fat cells] or the development of neural circuits that regulate feeding behavior. The effects may be most apparent when the developmental [early life] exposure is combined with consumption of a high-calorie, high-carbohydrate, or high-fat diet later in life.”

“The strongest conclusion from the workshop was that nicotine likely acts as a developmental obesogen in humans. This conclusion was based on the very consistent pattern of overweight/obesity observed in epidemiology studies of children of mothers who smoked during pregnancy (Figure 1) and was supported by findings from laboratory animals exposed to nicotine during prenatal [before birth] development.”

I found some data that don’t support that conclusion, however. Here’s a graph of U.S. smoking rates over the years since 1944. Note that the smoking rate has fallen by almost half since 1983, while obesity rates, including those of children, are going the opposite direction. If in utero cigarette smoke exposure were a major cause of U.S. childhood obesity, we’d be seeing less, not more, childhood obesity. I suppose we could still see a fall-off in adult obesity rates over the next 20 years, reflecting lower smoking rates.  But I doubt that will happen.

The CDC suggests a slight drop in childhood obesity in recent years (2010 data).

“The group concluded that there is evidence for a positive association of diabetes with certain organochlorine POPs [persistent organic pollutants]. Initial data mining indicated the strongest associations of diabetes with trans-nonachlor, DDT (dichloro-diphenyltrichloroethane)/DDE (dichloro-diphenyldichloroethylene)/DDD (dichloro-chlorophenylethane), and dioxins/dioxin-like chemicals, including polychlorinated biphenyl (PCBs). In no case was the body of data considered sufficient to establish causality [emphasis added].”

“Overall, this breakout group concluded that the existing data, primarily based on animal and in vitro studies [no live animals involved], are suggestive of an effect of BPA on glucose homeostasis, insulin release, cellular signaling in pancreatic β cells, and adipogenesis. The existing human data on BPA and diabetes (Lang et al. 2008Melzer et al. 2010) available at the time of the workshop were considered too limited to draw meaningful conclusions. Similarly, data were insufficient to evaluate BPA as a potential risk factor for childhood obesity.”

“It was not possible to reach clear conclusions about BPA and obesity from the existing animal data. Although several studies report body weight gain after developmental exposure, the overall pattern across studies is inconsistent.”

“The pesticide breakout group concluded the epidemiological, animal, and mechanistic data support the biological plausibility that exposure to multiple classes of pesticides may affect risk factors for diabetes and obesity, although many significant data gaps remain.”

“Recently, the focus of investigations has shifted toward studies designed to understand the consequences of developmental exposure to lower doses of organophosphates [insecticides], and the long-term effects of these exposures on metabolic dysfunction, diabetes, and obesity later in life. [All or nearly all the studies cited here were rodent studies, not human.] The general findings are that early-life exposure to otherwise subtoxic levels of organophosphates results in pre-diabetes, abnormalities of lipid metabolism, and promotion of obesity in response to increased dietary fat.”

In case it’s not obvious, remember that “association is not the same as causation.” For example, in the Northern hemisphere, higher swimsuit purchases are associated with summer. Swimsuit sales and summer are linked (associated), but one doesn’t cause the other. Swimsuit purchases are caused by the desire to go swimming, and that’s linked to warm weather.

In at least one of these two review articles, I looked carefully at the odds ratios of various chemicals linked to adverse outcomes. One way this is done is too measure the blood or tissue levels of a contaminant in a population, then compare the adverse outcome rates in animals with the highest and lowest levels of contamination. For instance, if those with the highest contamination have twice the incidence of diabetes as the least contaminated, the odds ratio is 2. You could also call it the relative risk. Many of the potentially harmful chemicals we’re considering have a relative risk ratio of 1.5 to 3. Contrast those numbers with the relative risk of death from lung cancer in smokers versus nonsmokers: the relative risk is 10. Smokers are 10 times more likely to die of lung cancer. That’s a much stronger association and a main reason we decided smoking causes lung cancer. Odds ratios under two are not very strong evidence when considering causality; we’d like to have more pieces of the puzzle.

These guys flat-out said arsenic is not a cause of diabetes in the U.S.

Overall, the authors of the second article I read were clearly less alarmed than those of the first. Could the less-alarmed panelists have been paid off by the chemical industry to produce a less scary report, so as not to jeopardize their profits? I don’t have the resources to investigate that possibility. The workshop was organized (and paid for, I assume) by the U.S. government, but that’s no guarantee of pure motivation by any means.

You need a break. Enjoy.

You need a break. Enjoy.

My Conclusions

For sure, if I were a momma rat contemplating pregnancy, I’d avoid all those chemicals like the plague!

It’s premature to say that these chemical contaminants are significant causes of obesity and type 2 diabetes in humans. That’s certainly possible, however. We’ll have to depend on unbiased scientists to do more definitive research for answers, which certainly seems a worthwhile endeavor. Something tells me the chemical producers won’t be paying for it. Universities or governments will have to do it.

You should keep your eyes and ears open for new evidence.

There’s more evidence for chemical contaminants as a potential cause of type 2 diabetes than for obesity. Fetal and childhood exposure may be more harmful than later in life.

If I were 89-years-old, I wouldn’t worry about these chemicals causing obesity or diabetes. For those quite a bit younger, taking action to avoid these environmental contaminants is optional. As for me, I’m drinking less water out of plastic bottles and more tap water out of glass or metal containers. Yet I’m not sure which water has fewer contaminants.

Humans, particularly those anticipating pregnancy and child-rearing, might be well advised to minimize exposure to the aforementioned chemicals. For now, I’ll leave you to your own devices to figure out how to do that. Good luck.

Why not read the two review articles I did and form your own opinion?

Unless the chemical industry is involved in fraud, bribery, obfuscation, or other malfeasance, the Plastic Planet documentary gets ahead of the science. I’m less afraid of my plastic containers now.

Steve Parker, M.D.

Additional Resources:

Sarah Howard at Diabetes and the Environment (focus on type 1 but much on type 2 also).

Jenny Ruhl, who thinks chemical contaminants are a significant cause of type 2 diabetes (search her site).

From Wikipedia:

The Bradford Hill criteria, otherwise known as Hill’s criteria for causation, are a group of minimal conditions necessary to provide adequate evidence of a causal relationship between an incidence and a consequence, established by the English epidemiologist Sir Austin Bradford Hill (1897–1991) in 1965.

The list of the criteria is as follows:

  1. Strength: A small association does not mean that there is not a causal effect, though the larger the association, the more likely that it is causal.
  2. Consistency: Consistent findings observed by different persons in different places with different samples strengthens the likelihood of an effect.
  3. Specificity: Causation is likely if a very specific population at a specific site and disease with no other likely explanation. The more specific an association between a factor and an effect is, the bigger the probability of a causal relationship.
  4. Temporality: The effect has to occur after the cause (and if there is an expected delay between the cause and expected effect, then the effect must occur after that delay).
  5. Biological gradient: Greater exposure should generally lead to greater incidence of the effect. However, in some cases, the mere presence of the factor can trigger the effect. In other cases, an inverse proportion is observed: greater exposure leads to lower incidence.
  6. Plausibility: A plausible mechanism between cause and effect is helpful (but Hill noted that knowledge of the mechanism is limited by current knowledge).
  7. Coherence: Coherence between epidemiological and laboratory findings increases the likelihood of an effect. However, Hill noted that “… lack of such [laboratory] evidence cannot nullify the epidemiological effect on associations”.
  8. Experiment: “Occasionally it is possible to appeal to experimental evidence”.
  9. Analogy: The effect of similar factors may be considered.

Science-Based Medicine blog has more on Hill’s criteria.

In T2 Diabetes, Which Comes First: High Insulin Levels or Insulin Resistance?

pancreas, liver, insulin, woman, teacher, books, diabetes, cause of diabetes

I couldn’t find a decent picture of a liver or pancreas, so this will have to do….

I’ve written elsewhere about the potential causes of T2 diabetes (here and here, for example). There’s a new theory on the block.

Excessive insulin output by the pancreas (hyperinsulinemia) is the underlying cause of type 2 diabetes, according to a hypothesis from Walter Pories, M.D., and G. Lynis Dohm, Ph.D.  The cause of the hyperinsulinemia is a yet-to-be-identified “diabetogenic signal” to the pancreas from the gastrointestinal tract.

This is pretty sciencey, so you’re excused if you stop reading now.  You probably should.

They base their hypothesis on the well-known cure or remission of many cases of type 2 diabetes quite soon after roux-en-y gastric bypass surgery (RYGB) done for weight loss.  (Recent data indicate that six years after surgery, the diabetes has recurred in about a third of cases.)  Elevated fasting insulin levels return to normal within a week of RYGB and remain normal for at least three months.  Also soon after surgery, the pancreas recovers the ability to respond to a meal with an appropriate insulin spike.  Remission or cure of type 2 diabetes after RYGB is independent of changes in weight, insulin sensitivity, or free fatty acids.

Bariatric surgery provides us with a “natural” experiment into the mechanisms behind type 2 diabetes.

The primary anatomic change with RYGB is exclusion of food from a portion of the gastrointestinal tract, which must send a signal to the pancreas resulting in lower insulin levels, according to Pories and Dohm. (RYGB prevents food from hitting most of the stomach and the first part of the small intestine.)

Why would fasting blood sugar levels fall so soon after RYGB?  To understand, you have to know that fasting glucose levels primarily reflect glucose production by the liver (gluconeogenesis).  It’s regulated by insulin and other hormones.  Insulin generally suppresses gluconeogenesis.  The lower insulin levels after surgery should raise fasting glucose levels then, don’t you think?  But that’s not the case.

Pories and Dohm surmise that correction of hyperinsulinemia after surgery leads to fewer glucose building blocks (pyruvate, alanine, and especially lactate) delivered from muscles to the liver for glucose production.  Their explanation involves an upregulated Cori cycle, etc.  It’s pretty boring and difficult to follow unless you’re a biochemist.

The theory we’re talking about is contrary to the leading theory that insulin resistance causes hyperinsulinemia.  Our guys are suggesting it’s the other way around: hyperinsulinemia causes insulin resistance.  It’s a chicken or the egg sort of thing.

If they’re right, Pories and Dohm say we need to rethink the idea of treating type 2 diabetes with insulin except in the very late stages when there may be no alternative.  (I would add my concern about using insulin secretagogues (e.g., sulfonylureas) in that case also.)  If high insulin levels are the culprit, you don’t want to add to them.

We’d also need to figure out what is the source of the “diabetogenic signal” from the gastrointestinal tract to the pancreas that causes hyperinsulinemia.  A number of stomach and intestinal hormones can affect insulin production by the pancreas; these were not mentioned specifically by Pories and Dohm.  Examples are GIP and GLP-1 (glucose-dependent insulinotropic polypeptide and glucagon-like peptide-1).

Keep these ideas in mind when you come across someone who’s cocksure that they know the cause of type 2 diabetes.

Steve Parker, M.D.

Reference:  Pories, Walter and Dohm, G. Lynis.  Diabetes: Have we got it all wrong?  Hyperinsulinism as the culprit: surgery provides the evidence.  Diabetes Care, 2012, vol. 35, p. 2438-2442.

What Causes Type 2 Diabetes?

“Beats me. I teach math!”

There’s no simple answer, unfortunately.

You can lower your risk of type 2 diabetes significantly by avoiding overweight and obesity, by exercising regularly, and by choosing the right parents.  These provide clues as to the causes of diabetes.  The Mediterranean diet also prevents diabetes.

UpToDate.com offers a deceptively simple answer:

Type 2 diabetes mellitus is caused by a combination of varying degrees of insulin resistance and relative insulin deficiency. [Insulin is the pancreas hormone that lowers blood sugar.] Its occurrence most likely represents a complex interaction among many genes and environmental factors, which are different among different populations and individuals.

So, what causes the insulin resistance and relative insulin deficiency?

Understanding the pathogenesis [cause] of type 2 diabetes is complicated by several factors. Patients present with a combination of varying degrees of insulin resistance and relative insulin deficiency, and it is likely that both contribute to type 2 diabetes. Furthermore, each of the clinical features can arise through genetic or environmental influences, making it difficult to determine the exact cause in an individual patient. Moreover, hyperglycemia itself can impair pancreatic beta cell function and exacerbate insulin resistance, leading to a vicious cycle of hyperglycemia causing a worsening metabolic state.

The UpToDate article then drones on, discussing mouse studies, various genes, free fatty acids, adiponectin, leptin, amylin, insulin secretion, insulin resistance, impaired insulin processing, insulin action, body fat distribution, inflammation, various inflammatory markers, low birth weight, high birth rate, prematurity, etc.

More excerpts:

Increased free fatty acid levels, inflammatory cytokines from fat, and oxidative factors, have all been implicated in the pathogenesis of metabolic syndrome, type 2 diabetes, and their cardiovascular complications.

Insulin resistance may, at least in part, be related to substances secreted by adipocytes [fat cells] (“adipokines” including leptin adiponectin, tumor necrosis factor alpha, and resistin).

Type 2 diabetes most likely represents a complex interaction among many genes and environmental factors.

That’s the simplest answer I can give now.

Steve Parker, M.D.

Reference: “The Pathogensis of Type 2 Diabetes Mellitus”  by David K McCulloch, MD, and R Paul Robertson, MD, at UpToDate.com, updated June 2012, and accessed November 19, 2012.

What’s Wrong With Type 2 Diabetics?

Type 2 diabetes and prediabetes are epidemics because of excessive consumption of refined sugars and starches, and lack of physical activity.  I can’t prove it; nevertheless that’s my impression after years of reading the nutrition science literature and thinking about it.

I could be wrong.  I reserve the option to change my mind based on evidence as it becomes available.  That’s one of the great things about science.  Accurately identifying the cause of diabetes could provide strong clues about optimal prevention and treatment strategies.

Genetics undoubtedly plays a major role in diabetes, but the gene pool hasn’t changed much over the last several decades as type 2 diabetes rates have soared.

The problem in type 2 diabetes and prediabetes is that the body cannot handle ingested carbohydrates in the normal fashion. In a way, dietary carbohydrates (carbs) have become toxic instead of nourishing. This is a critical point, so let’s take time to understand it.

NORMAL DIGESTION AND CARBOHYDRATE HANDLING

The major components of food are proteins, fats, and carbohydrates. We digest food either to get energy, or to use individual components of food in growth, maintenance, or repair of our own body parts.

We need some sugar (also called glucose) in our bloodstream at all times to supply us with immediate energy. “Energy” refers not only to a sense of muscular strength and vitality, but also to fuel for our brain, heart, and other automatic systems. Our brains especially need a reliable supply of bloodstream glucose.

In a normal, healthy state, our blood contains very little sugar—about a teaspoon (5 ml) of glucose. (We have about one and a third gallons (5 liters) of blood circulating. A normal blood sugar of 100 mg/dl (5.56 mmol/l) equates to about a teaspoon of glucose in the bloodstream.)

Our bodies have elaborate natural mechanisms for keeping blood sugar normal. They work continuously, a combination of adding and removing sugar from the bloodstream to keep it in a healthy range (70 to 140 mg/dl, or 3.9 to 7.8 mmol/l). These homeostatic mechanisms are out of balance in people with diabetes and prediabetes.

By the way, glucose in the bloodstream is commonly referred to as “blood sugar,” even though there are many other types of sugar other than glucose. In the U.S., blood sugar is measured in units of milligrams per deciliter (mg/dl), but other places measure in millimoles per liter (mmol/l).

When blood sugar levels start to rise in response to food, the pancreas gland—its beta cells, specifically—secrete insulin into the bloodstream to keep sugar levels from rising too high. The insulin drives the excess sugar out of the blood, into our tissues. Once inside the tissues’ cells, the glucose will be used as an immediate energy source or stored for later use. Excessive sugar is stored either as body fat or as glycogen in liver and muscle.

When we digest fats, we see very little direct effect on blood sugar levels. That’s because fat contains almost no carbohydrates. In fact, when fats are eaten with high-carb foods, they tend to slow the rise and peak in blood sugar you would see if you had eaten the carbs alone.

Ingested protein can and does raise blood sugar, usually to a mild degree. As proteins are digested, our bodies can make sugar (glucose) out of the breakdown products. The healthy pancreas releases some insulin to keep the blood sugar from going too high.

In contrast to fats and proteins, carbohydrates in food cause significant—often dramatic—rises in blood sugar. Our pancreas, in turn, secretes higher amounts of insulin to prevent excessive elevation of blood glucose. Carbohydrates are easily digested and converted into blood sugar. The exception is fiber, which is indigestible and passes through us unchanged.

During the course of a day, the pancreas of a healthy person produces an average of 40 to 60 units of insulin. Half of that insulin is secreted in response to meals, the other half is steady state or “basal” insulin. The exact amount of insulin depends quite heavily on the amount and timing of carbohydrates eaten. Dietary protein has much less influence. A pancreas in a healthy person eating a very-low-carb diet will release substantially less than 50 units of insulin a day.

To summarize thus far: dietary carbs are the major source of blood sugar for most people eating “normally.” Carbs are, in turn, the main cause for insulin release by the pancreas, to keep blood sugar levels in a safe, healthy range.

Hang on, because we’re almost done with the basic science!

You deserve a break

CARBOHYDRATE  HANDLING  IN  DIABETES  &  PREDIABETES

Type 2 diabetics and prediabetics absorb carbohydrates and break them down into glucose just fine. Problem is, they can’t clear the glucose out of the bloodstream normally. So blood sugar levels are often in the elevated, poisonous range, leading to many of the complications of diabetes.

Remember that insulin’s primary function is to drive blood glucose out of the bloodstream, into our tissues, for use as immediate energy or stored energy (as fat or glycogen).

In diabetes and prediabetes, this function of insulin is impaired.

The tissues have lost some of their sensitivity to insulin’s action. This critical concept is called insulin resistance. Insulin still has some effect on the tissues, but not as much as it should. Different diabetics have different degrees of insulin resistance, and you can’t tell by just looking.  (There are several other hormones involved in regulation of blood sugar.)

Did you know that people who work at garbage dumps, sewage treatment plants, and cattle feedlots get used to the noxious fumes after a while? They aren’t bothered by them as much as they were at first. Their noses are less sensitive to the fumes. You could call it fume resistance. In the same fashion, cells exposed to high insulin levels over time become resistant to insulin.

Insulin resistance occurs in most cases of type 2 diabetes and prediabetes. So what causes the insulin resistance? It’s debatable. In many cases it’s related to overweight, physical inactivity, and genetics. A high-carbohydrate diet may contribute. A few cases are caused by drugs. Some cases are a mystery.

To overcome the body tissue’s resistance to insulin’s effect, the pancreas beta cells pump even more insulin into the bloodstream, a condition called hyperinsulinemia. Some scientists believe high insulin levels alone cause some of the damage associated with diabetes. Whereas a healthy person without diabetes needs about 50 units of insulin a day, an obese non-diabetic needs about twice that to keep blood sugars in check. Eventually, in those who develop diabetes or prediabetes, the pancreas can’t keep up with the demand for more insulin to overcome insulin resistance. The pancreas beta cells get exhausted and start to “burn out.” That’s when blood sugars start to rise and diabetes and prediabetes are easily diagnosed. So, insulin resistance and high insulin production have been going on for years before diagnosis. By the time of diagnosis, 50% of beta cell function is lost.

Steve Parker, M.D.

EXTRA  CREDIT  FOR  INQUISITIVE  MINDS

You’ve learned that insulin’s main action is to lower blood sugar by transporting it into the cells of various tissues. But that’s not all insulin does. It also 1) impairs breakdown of glycogen into glucose, 2) stimulates glycogen formation, 3) inhibits formation of new glucose molecules by the body, 4) promotes storage of triglycerides in fat cells (i.e., lipogenesis, fat accumulation), 5) promotes formation of fatty acids (triglyceride building blocks) by the liver, 6) inhibits breakdown of stored triglycerides, and 7) supports body protein production.

In his fascinating book, Cheating Destiny: Living With Diabetes, America’s Biggest Epidemic, James Hirsch describes what happened to type 1 diabetics before insulin injections were available. Type 1 diabetics produce no insulin. Until Frederick Banting and Charles Best isolated and injected insulin in the 1920s, type 1 diabetes was a death sentence characterized not only by high blood sugars, but also extreme weight loss as muscle and fat tissue wasted away. The tissue wasting reflects insulin actions No. 4, 5, 6, and 7 above.

Banting and Best worked at the University of Toronto in Canada. Their “discovery” of insulin is one of the greatest medical achievements of all time.