Tag Archives: cause of diabetes

Does Pollution Cause Type 2 Diabetes?

See text for mention of pancreatic alpha and beta cells

See text for mention of pancreatic alpha and beta cells

A panel of university-based scientists convened by The Endocrine Society recently reviewed the available literature on health effects of endocrine-disrupting chemicals (aka EDCs). The executive summary is available free online. Some excerpts:

The full Scientific Statement represents a comprehensive review of the literature on seven topics for which there is strong mechanistic, experimental, animal, and epidemiological evidence for endocrine disruption, namely: obesity and diabetes, female reproduction, male reproduction, hormone-sensitive cancers in females, prostate cancer, thyroid, and neurodevelopment and neuroendocrine systems. EDCs such as bisphenol A, phthalates, pesticides, persistent organic pollutants such as polychlorinated biphenyls, polybrominated diethyl ethers, and dioxins were emphasized because these chemicals had the greatest depth and breadth of available information.

*  *  *

Both cellular and animal models demonstrate a role for EDCs in the etiology of obesity and T2D [type 2 diabetes]. For obesity, animal studies show that EDC-induced weight gain depends on the timing of exposure and the age of the animals. Exposures during the perinatal period [the weeks before and after birth] trigger obesity later in life. New results covering a whole range of EDC doses have underscored the importance of nonmonotonic dose-response relationships; some doses induced weight increase, whereas others did not. Furthermore, EDCs elicit obesity by acting directly on white adipose tissue, al- though brain, liver, and even the endocrine pancreas may be direct targets as well.

Regarding T2D, animal studies indicate that some EDCs directly target 􏰁beta and alpha cells in the pancreas, adipocytes, and liver cells and provoke insulin resistance together with hyperinsulinemia. These changes can also be associated with altered levels of adiponectin and leptin— often in the absence of weight gain. This diabetogenic action is also a risk factor for cardiovascular diseases, and hyperinsulinemia can drive diet-induced obesity. Epide- miological studies in humans also point to an association between EDC exposures and obesity and/or T2D; however, because many epidemiological studies are cross-sectional, with diet as an important confounding factor in humans, it is not yet possible to infer causality.

RTWT.

Bix at Fanatic Cook blog says foods of animal origin are the major source of harmful persistent organic pollutants, some of which act as ECDs.

Keep your eyes and ears open for new research reports on this critically important topic.

Steve Parker, M.D.

Book front cover

Book front cover

Antibiotics May Cause Type 2 Diabetes

Denmark researchers found an association between antibiotic usage and later development of type 2 diabetes. Just because there’s a linkage between antibiotics and type 2 diabetes doesn’t mean there is a direct causal relationship.

One possible way that antibiotics could cause diabetes, however, would be through alteration of gut germs (aka microbiome). An antibiotic may do a great job curing your urinary tract infection, while at the same time eliminating millions of certain gut bacteria and allowing other species to have a population explosion. One of the most fascinating fields of medicine now is trying to figure out if and how the billions of bacteria in our intestines might influence health and disease. F’rinstance, gut bacteria may influence whether we are fat or slim.

I bet if you graphed antibiotic use and incidence of type 2 diabetes over the last 50 years, they would trend together pretty well. Any volunteers to do that?

Steve Parker, M.D.

Could Fructose Cause Diabetes?

Lumps of Diabetes

Cubes of Diabetes?

A Pharm.D (Dr of Pharmacology) and a pair of MD’s surveyed much of the available scientific literature—both animal and human studies—and concluded that fructose is a major culprit in the rise of type 2 diabetes and prediabetes. Fructose does its damage by increasing insulin resistance. ScienceDaily has the details.

Be aware that their conclusion is certainly not universally accepted. I read “Pathogenesis of type 2 diabetes mellitus” at UpToDate.com a few months ago and saw no mention of fructose. Under dietary factors, they mainly talked about obesity and how that increases insulin resistance, leading to elevated blood sugars, while the reverse happens with weight loss. I haven’t looked at all the research so I have no definite opinion yet on the fructose-diabetes theory; I’m skeptical.

Fructose is a type of simple sugar. Common dietary sources of fructose are fruits, table sugar (aka sucrose, a 50:50 combination of glucose and fructose molecules), and high-fructose corn syrup (which is usually 42 or 55% fructose).

Damaging effects, if any, of fructose in these fruits may be mitigated by the fiber

Damaging effects, if any, of fructose in these fruits may be mitigated by the fiber

A few quotes from ScienceDaily:

“At current levels, added-sugar consumption, and added-fructose consumption in particular, are fueling a worsening epidemic of type 2 diabetes,” said lead author James J. DiNicolantonio, PharmD, a cardiovascular research scientist at Saint Luke’s Mid America Heart Institute, Kansas City, MO. “Approximately 40% of U.S. adults already have some degree of insulin resistance with projections that nearly the same percentage will eventually develop frank diabetes.”

*   *   *

While fructose is found naturally in some whole foods like fruits and vegetables, consuming these foods poses no problem for human health. Indeed, consuming fruits and vegetables is likely protective against diabetes and broader cardiometabolic dysfunction, explained DiNicolantonio and colleagues. The authors propose that dietary guidelines should be modified to encourage individuals to replace processed foods, laden with added sugars and fructose, with whole foods like fruits and vegetables. “Most existing guidelines fall short of this mark at the potential cost of worsening rates of diabetes and related cardiovascular and other consequences,” they wrote.

If you’re eating a typical Western or American diet, you’ll reduce your fructose consumption by adopting the Paleobetic DietMediterranean diet, or Low-Carb Mediterranean Diet.

RTWT.

Steve Parker, M.D.

If You Have Diabetes, You Need to Know About Glucagon

I couldn't find a pertinent picture

I couldn’t find a pertinent picture

Everybody knows that insulin is the key hormone gone haywire in diabetes, right? Did you know it’s not the only one out of whack? Roger Unger and Alan Cherrington in The Journal of Clinical Investigation point out that another hormone—glucagon—is also very important in regulation of blood sugar in both types of diabetes.

Insulin has a variety of actions the ultimately keep blood sugar levels from rising dangerously high. Glucagon, on the other hand, keeps blood sugar from dropping too low. For instance, when you stop eating food, as in an overnight or longer fast, glucagon stimulates glucose (sugar) production by your liver so you don’t go into a hypoglycemic coma and die. It does the same when you exercise, as your muscles soak up glucose from your blood stream.

Glucagon works so well to raise blood sugar that we inject it into diabetics who are hypoglycemic but comatose or otherwise unable to swallow carbohydrates.

Glucagon also has effects on fatty acid metabolism, ketone production, and liver protein metabolism, but this post is already complicated enough.

So where does glucagon come from? The islets of Langherhans, for one. You already know the healthy pancreas has beta cells that produce insulin. The pancreas has other cells—alpha or α cells—that produce glucagon. Furthermore, the stomach and duodenum (the first part of the small intestine) also have glucagon-producing alpha cells. The insulin and glucagon work together to keep blood sugar in an fairly narrow range. Insulin lowers blood sugar, glucagon raises it. It’s sort of like aiming for a hot bath by running a mix of cold and very hot water.

Update: I just licensed this from Shutterstock.com

Update: I just licensed this from Shutterstock.com

Ungar and Cherrington say that one reason it’s so hard to tightly control blood sugars in type 1 diabetes is because we don’t address the high levels of glucagon. The bath water’s not right because we’re fiddling with just one of the faucets. Maybe we’ll call this the Goldilocks Theory of Diabetes.

When you eat carbohydrates, your blood sugar starts to rise. Beta cells in the healthy pancreas start secreting insulin to keep a lid on the blood sugar rise. This is not the time you want uncontrolled release of glucagon from the alpha cells, which would work to raise blood sugars further. Within the pancreas, beta and alpha cells are in close proximity. Insulin from the beta cells directly affects the nearby alpha cells to suppress glucagon release. This localized hormone effect is referred to as “paracrine guidance” in the quote below, and it takes very little insulin to suppress glucagon.

From the Ungar and Cherrington article:

Here, we review evidence that the insulinocentric view of metabolic homeostasis is incomplete and that glucagon is indeed a key regulator of normal fuel metabolism, albeit under insulin’s paracrine guidance and control. Most importantly, we emphasize that, whenever paracrine control by insulin is lacking, as in T1DM, the resulting unbridled hyperglucagonemia is the proximal cause of the deadly consequences of uncontrolled diabetes and the glycemic volatility of even “well-controlled” patients.

*  *  *

All in all, it would seem that conventional monotherapy with insulin is incomplete because it can provide paracrine suppression of glucagon secretion only by seriously overdosing the extrapancreatic tissues.

So What?

Elucidation of diabetes’ disease mechanisms (pathophysiology) can lead to new drugs or other therapies that improve the lives of diabetics. A potential drug candidate is leptin, known to suppress glucagon hyper secretion in rodents with type 1 diabetes.

RTWT.

Steve Parker, M.D.

PS: Amylin is yet another hormone involved in blood sugar regulation, but I’ll save that for another day. If you can’t wait, read about it here in my review of pramlintide, a drug for type 1 diabetes.

What’s Wrong With Type 2 Diabetics?

Type 2 diabetes and prediabetes are epidemics because of excessive consumption of refined sugars and starches, and lack of physical activity.  I can’t prove it; nevertheless that’s my impression after years of reading the nutrition science literature and thinking about it.

I could be wrong.  I reserve the option to change my mind based on evidence as it becomes available.  That’s one of the great things about science.  Accurately identifying the cause of diabetes could provide strong clues about optimal prevention and treatment strategies.

Genetics undoubtedly plays a major role in diabetes, but the gene pool hasn’t changed much over the last several decades as type 2 diabetes rates have soared.

The problem in type 2 diabetes and prediabetes is that the body cannot handle ingested carbohydrates in the normal fashion. In a way, dietary carbohydrates (carbs) have become toxic instead of nourishing. This is a critical point, so let’s take time to understand it.

NORMAL DIGESTION AND CARBOHYDRATE HANDLING

The major components of food are proteins, fats, and carbohydrates. We digest food either to get energy, or to use individual components of food in growth, maintenance, or repair of our own body parts.

We need some sugar (also called glucose) in our bloodstream at all times to supply us with immediate energy. “Energy” refers not only to a sense of muscular strength and vitality, but also to fuel for our brain, heart, and other automatic systems. Our brains especially need a reliable supply of bloodstream glucose.

In a normal, healthy state, our blood contains very little sugar—about a teaspoon (5 ml) of glucose. (We have about one and a third gallons (5 liters) of blood circulating. A normal blood sugar of 100 mg/dl (5.56 mmol/l) equates to about a teaspoon of glucose in the bloodstream.)

Our bodies have elaborate natural mechanisms for keeping blood sugar normal. They work continuously, a combination of adding and removing sugar from the bloodstream to keep it in a healthy range (70 to 140 mg/dl, or 3.9 to 7.8 mmol/l). These homeostatic mechanisms are out of balance in people with diabetes and prediabetes.

By the way, glucose in the bloodstream is commonly referred to as “blood sugar,” even though there are many other types of sugar other than glucose. In the U.S., blood sugar is measured in units of milligrams per deciliter (mg/dl), but other places measure in millimoles per liter (mmol/l).

When blood sugar levels start to rise in response to food, the pancreas gland—its beta cells, specifically—secrete insulin into the bloodstream to keep sugar levels from rising too high. The insulin drives the excess sugar out of the blood, into our tissues. Once inside the tissues’ cells, the glucose will be used as an immediate energy source or stored for later use. Excessive sugar is stored either as body fat or as glycogen in liver and muscle.

When we digest fats, we see very little direct effect on blood sugar levels. That’s because fat contains almost no carbohydrates. In fact, when fats are eaten with high-carb foods, they tend to slow the rise and peak in blood sugar you would see if you had eaten the carbs alone.

Ingested protein can and does raise blood sugar, usually to a mild degree. As proteins are digested, our bodies can make sugar (glucose) out of the breakdown products. The healthy pancreas releases some insulin to keep the blood sugar from going too high.

In contrast to fats and proteins, carbohydrates in food cause significant—often dramatic—rises in blood sugar. Our pancreas, in turn, secretes higher amounts of insulin to prevent excessive elevation of blood glucose. Carbohydrates are easily digested and converted into blood sugar. The exception is fiber, which is indigestible and passes through us unchanged.

During the course of a day, the pancreas of a healthy person produces an average of 40 to 60 units of insulin. Half of that insulin is secreted in response to meals, the other half is steady state or “basal” insulin. The exact amount of insulin depends quite heavily on the amount and timing of carbohydrates eaten. Dietary protein has much less influence. A pancreas in a healthy person eating a very-low-carb diet will release substantially less than 50 units of insulin a day.

To summarize thus far: dietary carbs are the major source of blood sugar for most people eating “normally.” Carbs are, in turn, the main cause for insulin release by the pancreas, to keep blood sugar levels in a safe, healthy range.

Hang on, because we’re almost done with the basic science!

You deserve a break

CARBOHYDRATE  HANDLING  IN  DIABETES  &  PREDIABETES

Type 2 diabetics and prediabetics absorb carbohydrates and break them down into glucose just fine. Problem is, they can’t clear the glucose out of the bloodstream normally. So blood sugar levels are often in the elevated, poisonous range, leading to many of the complications of diabetes.

Remember that insulin’s primary function is to drive blood glucose out of the bloodstream, into our tissues, for use as immediate energy or stored energy (as fat or glycogen).

In diabetes and prediabetes, this function of insulin is impaired.

The tissues have lost some of their sensitivity to insulin’s action. This critical concept is called insulin resistance. Insulin still has some effect on the tissues, but not as much as it should. Different diabetics have different degrees of insulin resistance, and you can’t tell by just looking.  (There are several other hormones involved in regulation of blood sugar.)

Did you know that people who work at garbage dumps, sewage treatment plants, and cattle feedlots get used to the noxious fumes after a while? They aren’t bothered by them as much as they were at first. Their noses are less sensitive to the fumes. You could call it fume resistance. In the same fashion, cells exposed to high insulin levels over time become resistant to insulin.

Insulin resistance occurs in most cases of type 2 diabetes and prediabetes. So what causes the insulin resistance? It’s debatable. In many cases it’s related to overweight, physical inactivity, and genetics. A high-carbohydrate diet may contribute. A few cases are caused by drugs. Some cases are a mystery.

To overcome the body tissue’s resistance to insulin’s effect, the pancreas beta cells pump even more insulin into the bloodstream, a condition called hyperinsulinemia. Some scientists believe high insulin levels alone cause some of the damage associated with diabetes. Whereas a healthy person without diabetes needs about 50 units of insulin a day, an obese non-diabetic needs about twice that to keep blood sugars in check. Eventually, in those who develop diabetes or prediabetes, the pancreas can’t keep up with the demand for more insulin to overcome insulin resistance. The pancreas beta cells get exhausted and start to “burn out.” That’s when blood sugars start to rise and diabetes and prediabetes are easily diagnosed. So, insulin resistance and high insulin production have been going on for years before diagnosis. By the time of diagnosis, 50% of beta cell function is lost.

Steve Parker, M.D.

EXTRA  CREDIT  FOR  INQUISITIVE  MINDS

You’ve learned that insulin’s main action is to lower blood sugar by transporting it into the cells of various tissues. But that’s not all insulin does. It also 1) impairs breakdown of glycogen into glucose, 2) stimulates glycogen formation, 3) inhibits formation of new glucose molecules by the body, 4) promotes storage of triglycerides in fat cells (i.e., lipogenesis, fat accumulation), 5) promotes formation of fatty acids (triglyceride building blocks) by the liver, 6) inhibits breakdown of stored triglycerides, and 7) supports body protein production.

In his fascinating book, Cheating Destiny: Living With Diabetes, America’s Biggest Epidemic, James Hirsch describes what happened to type 1 diabetics before insulin injections were available. Type 1 diabetics produce no insulin. Until Frederick Banting and Charles Best isolated and injected insulin in the 1920s, type 1 diabetes was a death sentence characterized not only by high blood sugars, but also extreme weight loss as muscle and fat tissue wasted away. The tissue wasting reflects insulin actions No. 4, 5, 6, and 7 above.

Banting and Best worked at the University of Toronto in Canada. Their “discovery” of insulin is one of the greatest medical achievements of all time.