Category Archives: Paleo Theory

Paleolithic Dieters: You May Have an Iodine Deficiency

A pinch of salt may cut the bitterness in a cup of coffee

An article in the European Journal of Clinical Nutrition suggests that paleolithic-type diets may be deficient in iodine. See my comment after the link below.

Abstract

BACKGROUND/OBJECTIVES:

Different diets are used for weight loss. A Paleolithic-type diet (PD) has beneficial metabolic effects, but two of the largest iodine sources, table salt and dairy products, are excluded. The objectives of this study were to compare 24-h urinary iodine concentration (24-UIC) in subjects on PD with 24-UIC in subjects on a diet according to the Nordic Nutrition Recommendations (NNR) and to study if PD results in a higher risk of developing iodine deficiency (ID), than NNR diet.

SUBJECTS/METHODS:

A 2-year prospective randomized trial in a tertiary referral center where healthy postmenopausal overweight or obese women were randomized to either PD (n=35) or NNR diet (n=35). Dietary iodine intake, 24-UIC, 24-h urinary iodine excretion (24-UIE), free thyroxin (FT4), free triiodothyronine (FT3) and thyrotropin (TSH) were measured at baseline, 6 and 24 months. Completeness of urine sampling was monitored by para-aminobenzoic acid and salt intake by urinary sodium.

RESULTS:

At baseline, median 24-UIC (71.0 μg/l) and 24-UIE (134.0 μg/d) were similar in the PD and NNR groups. After 6 months, 24-UIC had decreased to 36.0 μg/l (P=0.001) and 24-UIE to 77.0 μg/d (P=0.001) in the PD group; in the NNR group, levels were unaltered. FT4, TSH and FT3 were similar in both groups, except for FT3 at 6 months being lower in PD than in NNR group.

CONCLUSIONS:

A PD results in a higher risk of developing ID, than a diet according to the NNR. Therefore, we suggest iodine supplementation should be considered when on a PD.

(European Journal of Clinical Nutrition advance online publication, 13 September 2017; doi:10.1038/ejcn.2017.134.PMID: 28901333 DOI: 10.1038/ejcn.2017.134)

Source: A Paleolithic-type diet results in iodine deficiency: a 2-year randomized trial in postmenopausal obese women. – PubMed – NCBI

Parker here. I thought I knew a little about the Paleolithic diet, so was surprised to read above that table salt is excluded. It’s not excluded from the Paleobetic Diet. Most table salt purchased in the U.S. iodine-fortified. The introduction of iodized salt in the U.S. in 1924 raised IQ in iodine-deficient regions by 15 points!

Dietitian Amy Kubal Answers, “Are Potatoes Paleo?”

Rosemary Chicken (garnished with pico de gallo) and Rosemary Potatoes

Rosemary Chicken (garnished with pico de gallo) and Rosemary Potatoes

“The whole “to spud or not to spud” issue is seriously ‘no small potatoes’ in the Paleosphere. It’s highly debated as to whether or not white potatoes are ‘safe’ or ‘allowed’, and if they are okay, the questions really start rolling in – Can I eat the skin? I should only eat the red ones, right? How should I prepare them? Do I need to only eat them cold? If I do eat them, does it mean I’m not ‘doing Paleo’? It’s exhausting and absolutely amazing how such an innocent looking food can create so much controversy. Seriously, people are VERY opinionated on the issue, and I’m sure my opinions will not go unopposed. Well, haters be damned, you’re going to get them anyway.”

RTWT.

Source: “Ask Amy The RD”: Are Those Spuds For You?? The “Paleoness” of Potatoes

paleo diet, Steve Parker MD

Sweet potatoes ready to pop in the oven

What Are Our Ancestral Sleep Patterns?

shutterstock_110802431

He got up before sunrise

Here are some answers in the summary of an article in Current Biology:

How did humans sleep before the modern era? Because the tools to measure sleep under natural conditions were developed long after the invention of the electric devices suspected of delaying and reducing sleep, we investigated sleep in three preindustrial societies. We find that all three show similar sleep organization, suggesting that they express core human sleep patterns, most likely characteristic of pre-modern era Homo sapiens. Sleep periods, the times from onset to offset, averaged 6.9–8.5 hr, with sleep durations of 5.7–7.1 hr, amounts near the low end of those industrial societies. There was a difference of nearly 1 hr between summer and winter sleep. Daily variation in sleep duration was strongly linked to time of onset, rather than offset. None of these groups began sleep near sunset, onset occurring, on average, 3.3 hr after sunset. Awakening was usually before sunrise. The sleep period consistently occurred during the nighttime period of falling environmental temperature, was not interrupted by extended periods of waking, and terminated, with vasoconstriction, near the nadir of daily ambient temperature. The daily cycle of tem- perature change, largely eliminated from modern sleep environments, may be a potent natural regulator of sleep. Light exposure was maximal in the morning and greatly decreased at noon, indicating that all three groups seek shade at midday and that light activation of the suprachiasmatic nucleus is maximal in the morning. Napping occurred on <7% of days in winter and <22% of days in summer. Mimicking aspects of the natural environment might be effective in treating certain modern sleep disorders.

RTWT.

Paleolithic and Mediterranean Diet Patterns Reduce Markers of Inflammation

shutterstock_46067602

Many chronic medical conditions are though to be caused by chronic inflammation in our bodies. Sample conditions include high blood pressure, coronary artery disease (heart attacks), metabolic syndrome, type 2 diabetes, autoimmune diseases, and perhaps some cancers.

Taking the association further: could we prevent or alleviate these conditions by reducing inflammation? If so, diet is one way to do it.

Here’s an abstract from a scientific article I found:

Background: Chronic inflammation and oxidative balance are associated with poor diet quality and risk of cancer and other chronic diseases. A diet–inflammation/oxidative balance association may relate to evolutionary discordance.

“Objective: We investigated associations between 2 diet pattern scores, the Paleolithic and the Mediterranean, and circulating concentrations of 2 related biomarkers, high-sensitivity C-reactive protein (hsCRP), an acute inflammatory protein, and F2-isoprostane, a reliable marker of in vivo lipid peroxidation.

Methods: In a pooled cross-sectional study of 30- to 74-y-old men and women in an elective outpatient colonoscopy population (n = 646), we created diet scores from responses on Willett food-frequency questionnaires and measured plasma hsCRP and F2-isoprostane concentrations by ELISA and gas chromatography–mass spectrometry, respectively. Both diet scores were calculated and categorized into quintiles, and their associations with biomarker concentrations were estimated with the use of general linear models to calculate and compare adjusted geometric means, and via unconditional ordinal logistic regression.

Results: There were statistically significant trends for decreasing geometric mean plasma hsCRP and F2-isoprostane concentrations with increasing quintiles of the Paleolithic and Mediterranean diet scores. The multivariable-adjusted ORs comparing those in the highest with those in the lowest quintiles of the Paleolithic and Mediterranean diet scores were 0.61 (95% CI: 0.36, 1.05; P-trend = 0.06) and 0.71 (95% CI: 0.42, 1.20; P-trend = 0.01), respectively, for a higher hsCRP concentration, and 0.51 (95% CI: 0.27, 0.95; P-trend 0.01) and 0.39 (95% CI: 0.21, 0.73; P-trend = 0.01), respectively, for a higher F2-isoprostane concentration.

Conclusion: These findings suggest that diets that are more Paleolithic- or Mediterranean-like may be associated with lower levels of systemic inflammation and oxidative stress in humans.”

Source: Paleolithic and Mediterranean Diet Pattern Scores Are Inversely Associated with Biomarkers of Inflammation and Oxidative Balance in Adults

Impact of meat and Lower Palaeolithic food processing techniques on chewing in humans 

Gotcha!

Gotcha!

Catherine Zink and Daniel Lieberman have a research paper you science nerds might be interested in. A teaser:

“Yet Homo erectus differs from earlier hominins in having relatively smaller teeth, reduced chewing muscles, weaker maximum bite force capabilities, and a relatively smaller gut. This paradoxical combination of increased energy demands along with decreased masticatory and digestive capacities is hypothesized to have been made possible by adding meat to the diet, by mechanically processing food using stone tools, or by cooking. Cooking, however, was apparently uncommon until 500,000 years ago.

Source: Impact of meat and Lower Palaeolithic food processing techniques on chewing in humans : Nature : Nature Publishing Group

Grant Schofield Defends the Paleo Diet for Diabetes

shutterstock_253272682

Schofield is a Professor of Public Health at Auckland University of Technology and Director of the Human Potential Centre. Prof. Sofianos Andrikopoulos authored an anti-paleo diet editorial in the Medical Journal of Australia.

Schofield penned a rebuttal at Sciblogs. A sample:

“The paleo diet – the idea that we should be guided in human nutrition/public health nutrition by evolutionary history is steeped with controversy. Health experts and authorities are seemingly going well out of their way to make sure people are warned off such ways of eating.

Proponents are often mystified by this, because the idea of using human evolutionary history to understand human function is common in human biology. In fact its a guiding principle. As well, in the midst of a chronic disease epidemic, including diabetes and obesity which are potentially improved by this approach, you’d think approaches which are based on whole food eating, and appeal to at least some of the population would be welcomed.

I find it curious that other approaches such as vegetarianism, which are often based not around science, but religion and other beliefs are welcome in public health nutrition advice. Yet the paleo approach is not.

Yes, people who are follow this way of eating are restricted to eating much less processed food and often lower carbohydrate diets. Neither of these approaches are known to be anything but beneficial for human health, especially in the context of diabetes.”

Source: Sciblogs | Anti-paleo diet attacks miss the point Read the whole thing.

Steve Parker, M.D.

No degludec up in here!

Available worldwide

Óscar Picazo Compiled a List of Scientific Articles on the Paleolithic Diet

Not Oscar Picazo

Not Oscar Picazo

Click the link below to see the articles, which are in English. Óscar’s introduction:

“Hace ya más de un año, compartí aquí la lista actualizada de estudios hasta la fecha, en relación a la paleodieta, dieta evolutiva, o como se le quiera llamar.El último año ha sido bastante activo en este sentido, con varios trabajos publicados, varios ensayos clínicos, y un meta-análisis.A continuación la lista actualizada. Si falta alguno, por favor indícamelo y lo incluyo.Y solo por recordarlo… mi opinión sobre el tema.”

Source: Paleodieta: Bibliografía actualizada | Óscar Picazo

Thanks, Oscar!

Paleo Diet Pioneer Melvin Konner’s Latest Thoughts on Healthy Eating

Back in 1985, Melvin Konner and S. Boyd Eaton got the ball rolling on the current Paleolithic diet movement. Thirty years later, what would Konner say is a healthy way to eat?

Recent data on these issues make me more comfortable today saying what not to eat. Our ancestors had no refined carbs, which are killing us. We’d be wise to limit salt and saturated fat, which our ancestors’ prey had little of, and fiber and omega-three fatty acids seem to be good. Most humans have to avoid dairy; many must avoid wheat. Find out if you’re one of them. Exercise. That’s about it.

I’ve seen good data saying salt restriction is both harmful an helpful. So flip a coin or talk to your personal physician. If I were looking at starting a drug for hypertension, I’d certainly cut back on salt first and see if that cured me.

Recent clinical studies show that saturated fat isn’t harmful to most of us.

Steve Parker, M.D.

No link to suicide

An Argument for Copious Carbohydrate Content In the Paleo Diet

Salivary amylase helps us digest starches like wheat

Salivary amylase helps us digest starches like wheat

A recent scientific paper proposes that carbohydrates—starches specifically—played a larger role in the ancestral human diet than previously thought. I’ll call this paper the Hardy study since she’s the first named author. The only author I recognize is Jennie Brand-Miller, of glycemic index fame.

A key part of the hypothesis is that our ancestors’ use of fire made starchy foods much more digestible. That’s not controversial. Wrangham thinks hominins have been using fire for cooking for over a million years. Humans, remember, arrived on the scene about 200,000 years ago.

I’m not saying I agree or disagree with the researchers. Read the paper and decide for yourself. I do feel somewhat vindicated in my inclusion of potatoes and other tubers in my version of the Paleolithic diet.

RTWT.

Steve Parker, M.D.

PS: The article references the Pleistocene Epoch. You’ll find various definitions of that, but the Pleistocene ranged from about 1.8 million to 11,000 years ago .

Theoretical Support for the Healthfulness of the Paleo Diet

See modern man walking off that cliff?

See modern man walking off that cliff?

Aren’t people healthier now, thanks to the Agricultural and Industrial Revolutions?

As a marker for health, we can look at life span and longevity. Humans started to see dramatic increases in longevity probably around 30,000 years ago, before the revolutions. Nevertheless, Kuipers, Joordens, and Muskiet note that average life expectancy after the start of the Agricultural Revolution 10,000 years ago fell from about 40 to around 20 years.

Other researchers report that average height in the Nile River Valley at the time of the transition fell by 4 inches (10 cm). The Agricultural Revolution allowed for rapid expansion of human populations through more births, but those folks still didn’t live very long. As before the revolution, infections and high infant/child mortality rates were devastating killers, dragging down average life spans. If you survived childhood, you had a shot at hitting 50 or 60.

At the dawn of the Industrial Revolution, life expectancy at birth was only 35–40 years, even in then-sophisticated cultures like Switzerland. Consider Thomas Jefferson, the principal author of the U.S. Declaration of Independence and the third U.S. president, who lived between 1743 and 1826 (he died on July 4, Independence Day). He and his wife Martha had six children; only two survived to adulthood, and only one past the age of 25. Martha died at age 33. This mortality picture was typical for the times.

Since 1800, life expectancy has doubled in industrialized countries, but it’s mostly due to public health measures and economic prosperity. Other than smallpox vaccination, it wasn’t until the mid-20th century that medical care advances contributed in a major way to longevity.

Overview: Conflict Between Our Paleolithic Genes and Modern Life

A number of diseases or conditions may result from the mismatch of our Paleolithic genes and modern lifestyle. If not caused by the mismatch, they’re aggravated by it. These are the so-called “diseases of civilization”:

  • type 2 diabetes
  • high blood pressure
  • overweigh and obesity
  • dental caries (tooth decay or cavities)
  • osteoporosis
  • fertility problems (polycystic ovary syndrome)
  • pregnancy complications (pre-eclampsia, gestational diabetes)
  • some cancers (colon, breast, prostate)
  • heart disease (such as coronary artery disease)
  • major and postpartum depression
  • autism
  • schizophrenia
  • some neurodegenerative diseases (Parkinsons disease, Alzheimer’s disease)
  • constipation
  • hemorrhoids
  • diverticulosis
"I ate well over 70 grams of fiber daily!"

“I ate well over 70 grams of fiber daily!”

Overweight and Obesity

The Paleolithic diet is lower in total carbohydrate calories compared to the standard American diet: 30-35% versus 50-55% of calories. The higher consumption today, especially of highly processed refined carbohydrates, contributes to overweight and obesity, diabetes, gallbladder disease, heart disease, and possibly dementia. Ian Spreadbury hypothesizes that carbohydrate density of modern foods may be the cause of obesity. Refined sugars and grains—types of acellular carbohydrates—are particularly bad offenders. These acellular carbs may alter our gut microorganisms, leading to systemic inflammation and leptin resistance, etc. Our Paleolithic ancestors had little access to acellular carbohydrates. Here’s how Spreadbury explains acellular: “Tubers, fruits, or functional plant parts such as leaves and stems store their carbohydrates in organelles as part of fiber-walled living cells. These are thought to remain largely intact during cooking, which instead mostly breaks cell-to-cell adhesion. This cellular storage appears to mandate a maximum density of around 23% non-fibrous carbohydrate by mass, the bulk of the cellular weight being made up of water. The acellular carbohydrates of flour, sugar, and processed plant-starch products are considerably more dense. Grains themselves are also highly dense, dry stores of starch designed for rapid macroscopic enzymic mobilization during germination. Whereas foods with living cells will have their low carbohydrate density “locked in” until their cell walls are breached by digestive processes, the chyme produced after consumption of acellular flour and sugar-based foods is thus suggested to have a higher carbohydrate concentration than almost anything the microbiota of the upper GI tract from mouth to small bowel would have encountered during our coevolution.” (Reference: “Comparison with ancestral diets suggests dense acellular carbohydrates promote an inflammatory microbiota, and may be the primary dietary cause of leptin resistance and obesity,” in Diabetes, Metabolic Syndrome, and Obesity: Targets and Therapy. 2012; vol 5: 175–189. doi: 10.2147/DMSO.S33473 http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3402009/)

Added sugar provides 17 % of total energy in modern societies, contributing to overweight, obesity, tooth decay, and diabetes. Modern diets provide 15–20% of calories from protein, compared to 25–30% in the Paleolithic diet. To the extent that high protein consumption is satiating, lower consumption may cause over-eating of carbohydrates and fats, then overweight and obesity and all their associated medical conditions.

Heart Disease

I written elsewhere on the blog that the much lower omega-6 to omega-3 fatty acid ratio in the Paleolithic diet. There’s some evidence that today’s high ratio may contribute to systemic inflammation and chronic disease, heart disease in particular. Today’s ratio is quite high due to our consumption of industrial seed oils, such as those derived from soybeans, peanuts, corn, and safflower. And we don’t eat enough cold-water fatty fish, which are major sources of omega-3 fatty acids. Two long-chain polyunsaturated fatty acids, EPA and DHA, are essential fatty acids. That means our bodies cannot make them. We have to get them from diet. DHA and EPA are also cardioprotective omega-3 fatty acids.

High Blood Pressure

Most modern diets have much more sodium and much less potassium than the Paleolithic diet, perhaps contributing to high blood pressure, which in turn contributes to heart attacks, strokes, and possibly premature death. The higher magnesium content of the paleo diet may also help prevent high blood pressure.

Gastrointestinal Problems

We eat much less fiber these days, contributing to constipation, hemorrhoids, and diverticulosis. Some experts believe low fiber consumption adversely effects development of palate bones, jaws, and tooth placement.

Osteoporosis

Our lower vitamin D levels these days may cause osteoporosis (thin fragile bones) and raise the risk of diabetes and cancer. Our prehistoric ancestors spent more time in the sun, allowing their bodies to make vitamin D.

Type 2 Diabetes

Robert Lustig and associates looked at sugar consumption and diabetes rates in 175 countries and found a strong link between sugar and type 2 diabetes. It’s not proof of causation, just suggestive. From the scientific article abstract: “Duration and degree of sugar exposure correlated significantly with diabetes prevalence in a dose-dependent manner, while declines in sugar exposure correlated with significant subsequent declines in diabetes rates independently of other socioeconomic, dietary and obesity prevalence changes. Differences in sugar availability statistically explain variations in diabetes prevalence rates at a population level that are not explained by physical activity, overweight or obesity.” (Reference: Basu S, Yoffe P, Hills N, Lustig RH (2013) The Relationship of Sugar to Population-Level Diabetes Prevalence: An Econometric Analysis of Repeated Cross-Sectional Data. PLoS ONE 8(2): e57873. doi:10.1371/journal.pone.0057873)

A major diet change from Stone Age to modern diets is a reduction in magnesium consumption. This could be one reason type 2 diabetes is a problem today. A 2013 article at Diabetes Care suggests that higher magnesium consumption in modern populations may protect against type 2 diabetes (Reference: http://care.diabetesjournals.org/content/early/2013/09/23/dc13-1397.abstract.html?papetoc).

Dental Problems

Dentist John Sorrentino wrote at his blog in 2012: “The truth is that tooth decay is a relatively new phenomenon. Until the rise of agriculture roughly 10,000 years ago, THERE WAS NO TOOTH DECAY IN HUMANS. Let that sink in for a moment. Humanity is 2,500,000 years old. For the first 2,490,000 years no one ever had a cavity. If we understand that tooth decay started when people started farming instead of hunting and gathering for a living clearly you realize that tooth decay is a disease or mismatch between what you are eating and what your body expects you to eat. If we examine the past as prologue it becomes clear that the path to proper health starts in the mouth and the answers are so simple that not only did a Cave Man do it. They perfected it.” (Reference: http://www.sorrentinodental.com/blog.html?entry=why-teeth-decay-i)

To be fair and balanced, a research report from 2014 found a very high incidence of caries (cavities) in a Stone Age population living in what is now Morocco. The authors attributed the cavities to heavy consumption of acorns, which are rich in carbohydrates and sticky, to boot.

Orthodontist Mike Mew, BDS, MSc, made a presentation at the 2012 Ancestral Health Symposium titled “Craniofacial Dystrophy—Modern Melting Faces.” Dr. Mew says 30% of folks in Western populations have crooked teeth and/or malocclusion, and the mainstream orthodontic community doesn’t know why. But they’ve got expensive treatment for it! Dr. Mew thinks he knows the cause and he shared it at the symposium. The simple cure is “Teeth together. Lips together. Tongue on the roof of your mouth.” And eat hard food that requires lots of chewing, like our ancestors did, ideally in childhood before age 9. Older people also benefit, he says.

NPR (National Public Radio) in February, 2013, ran an article called “Ancient Choppers Were Healthier Than Ours,” by Audrey Carlsen. An excerpt: “Hunter-gatherers had really good teeth,” says Alan Cooper, director of the Australian Centre for Ancient DNA. “[But] as soon as you get to farming populations, you see this massive change. Huge amounts of gum disease. And cavities start cropping up.” And thousands of years later, we’re still waging, and often losing, our war against oral disease. Our changing diets are largely to blame. In a study published in the Nature Genetics, Cooper and his research team looked at calcified plaque on ancient teeth from 34 prehistoric human skeletons. What they found was that as our diets changed over time — shifting from meat, vegetables and nuts to carbohydrates and sugar — so too did the composition of bacteria in our mouths. Not all oral bacteria are bad. In fact, many of these microbes help us by protecting against more dangerous pathogens. (Reference: http://www.npr.org/blogs/health/2013/02/24/172688806/ancient-chompers-were-healthier-than-ours)

Dentist Mark Burhenne wrote the following at Huffington Post – Canada: “It is generally well accepted that tooth decay, in the modern sense, is a relatively new phenomena. Until the rise of agriculture roughly 10,000 years ago, there was nearly no tooth decay in the human race. Cavities became endemic in the 17th century but became an epidemic in the middle of the 20th century (1950). If we understand that tooth decay started when people started farming, rather than hunting and gathering, it’s clear that tooth decay is the result of a mismatch between what we’re eating and what our bodies are expecting us to eat based on how they evolved….The recent changes in our lifestyle create a “mismatch” for the mouth, which evolved under vastly different environments than what our mouths are exposed to these days. Our mouths evolved to be chewing tough meats and fibrous vegetables. Sugar laden fruit was a rare and special treat for our paleolithic ancestors. Now, our diets are filled with heavily processed foods that take hardly any energy to chew — smoothies, coffees, and sodas high in sugar, white bread, and crackers to name just a few.” (Reference: http://www.huffingtonpost.ca/mark-burhenne/paleo-diet-oral-health_b_4041350.html)

Shrinking Brains

Since the end of the Stone Age, human brain size has been shrinking. That’s not good, is it? Anthropologist John Hawks has noted that over the past 20,000 years, the average volume of the human male brain has decreased from 1,500 cubic centimeters to 1,350 cc, losing a chunk the size of a lemon. The female brain has shrunk proportionately. Anthropologists don’t know why. Is it modern nutrition? The experts aren’t sure what it means for our future. As for me, I think the answer is in Mike Judge’s movie, “Idiocracy.”

His brain was bigger than yours

His brain was bigger than yours

Death By Sugar

Sugar-sweetened beverages kill almost 200,000 worldwide annually, according to a Gitanjali Singh, Ph.D., a postdoctoral research fellow at the Harvard School of Public Health. How could that be? Sugar-sweetened beverages contribute to obesity, which in turn leads to diabetes, cardiovascular disease, and some cancers. (Reference: Singh, GM, et al “Mortality due to sugar-sweetened beverage consumption: A global, regional, and national comparative risk assessment,” American Heart Association Epidemiology and Prevention/Nutrition, Physical Activity and Metabolism 2013 Scientific Sessions, Abstract EPI-13-A-879-AHA.) Reducing consumption of sugar-sweetened beverages was one of the major points in the American Heart Association’s 2010 guidelines for reducing heart disease.

Elderly Cognitive Impairment

Diets high in sugar and other carbohydrates raise the risk of elderly cognitive impairment, according to recent research by the Mayo Clinic. Mild cognitive impairment is often a precursor to incurable dementia. (Most authorities think dementia develops more often in people with diabetes, although some studies refute the linkage.) Researchers followed 940 patients with normal baseline cognitive functioning over the course of four years. Diet was assessed via questionnaire. Study participants were ages 70 to 89. As the years passed, 200 of them developed mild cognitive impairment. Compared with those eating the lowest amount of sugar, those eating the most sugar were 1.5 times more likely to develop cognitive impairment. Looking at total carbohydrate consumption, those eating at the highest levels of carbohydrate consumption were almost twice as likely to develop mild cognitive impairment. The scientists note that those eating lower on the carbohydrate continuum were eating more fats and proteins. (Reference: Mayo Clinic website, published October 16, 2012 http://www.mayoclinic.org/news2012-rst/7128.html)

Is a Paleolithic-Style Diet the Healthiest Way to Eat?

Certified paleo-compliant, plus high omega-3 fatty acids

Certified paleo-compliant, plus high omega-3 fatty acids

The jury’s still out on that one! My strong sense is that it’s definitely more healthful than the Standard American Diet. Maybe the traditional Mediterranean diet or DASH diet is even healthier. Don’t hold your breath waiting for the randomized controlled trials that would answer the question definitively.

If the paleo diet is the healthiest, which version is best? That’s a question for another day (or year).

The most healthful diet for you depends on your genetic make-up and any medical conditions you have.

Steve Parker, M.D.